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Introduction

In most pattern recognition applications, the common parametric forms of
the underlying density function rarely fit the densities actually encountered
in practice.

Classical parametric densities are unimodal (have a single local maximum),
whereas many practical problems involve multimodal densities.

Types of nonparametric methods in pattern recognition:
Procedures for estimating the density functions p(x|ωj ) from sample
patterns; if these estimates are satisfactory, they can be substituted for the
true densities when designing the classifier.
Procedures for directly estimating the a posteriori probabilities P(ωj |x);
closely related to nonparametric design procedures such as the
nearest-neighbor rule, which bypass probability estimation and go directly to
decision functions.
Procedures for transforming the feature space in the hope that it may be
possible to employ parametric methods in the transformed space.
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Density estimation

Most fundamental techniques rely on the fact that the probability P that a
vector x will fall in a region R is given by

P =

∫
R
p(x′)dx′.

We can estimate a smoothed value of the density function p(x) by
estimating the probability P.
For n samples x1, . . . , xn from a i.i.d. distribution with the probability law
p(x), the probability that k of them fall in R is given by

Pk = C k
n P

k(1− P)n−k ,

with the expected value for k, ε[k] = nP.
The ration k/n is a very good estimate for the probability P, and hence
for the smoothed density function.
Under the assumptions that p(x) is continuous and that the region R is so
small that p does not vary appreciably within it,∫

R
p(x′)dx′ ≈ p(x)V ,

where x is a point within R and V is the volume enclosed by R. Hence

p(x) ≈ k/n

V
.
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The procedure for estimating the density at x implies forming a sequence
of regions R1,R2, . . . , containing x – the first region to be used with one
sample, the second with two, and so on.

Vn – the volume of Rn, kn – the number of samples falling in Rn, pn(x) –
the n-th estimate for p(x):

pn(x) ≈ kn/n

Vn
.

The three conditions for pn(x) to converge to p(x):
limn→∞ Vn = 0 (the space averaged P/V converges to p(x))
limn→∞ kn = ∞ (the frequency ratio converges in probability to the
probability P)
limn→∞ kn/n = 0 (necessary for pn(x) to converge at all; although a huge
number of samples will eventually fall within the small region Rn, they will
form a negligibly small fraction of the total number of samples)
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The first common way of obtaining adequate sequences of regions is to
shrink an initial region by specifying the volume Vn as some function of n,
such as Vn = 1/

√
n, and to prove that pn(x)→ p(x) (the Parzen-window

method).

The second method is to specify kn as some function of n, such as
kn =

√
n. Here, the volume Vn is grown until it encloses kn neighbors of x

(the kn-nearest neighbor estimation method).

Figure: Two methods for estimating the density at the center of each square.
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Parzen windows

Assume that the region Rn is a d-dimensional hypercube, with hn – the
length of an edge; its volume:

Vn = hd
n .

Define the window function (describing a unit hypercube centered at the
origin):

ϕ(u) =

{
1, |uj | ≤ 1/2, j = 1, . . . , d
0, otherwise.

Thus, ϕ((x− xi )/hn) is equal to unity if xi falls within the hypercube of
volume Vn centered at x, and is zero otherwise; the number of samples in
this hypercube is

kn =
n∑

i=1

ϕ

(
x− xi

hn

)
.

Hence, the estimate is

pn(x) =
1

n

n∑
i=1

1

Vn
ϕ

(
x− xi

hn

)
(the window function is used for interpolation).
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For the estimate pn(x) to be a legitimate density function, the window
function must be a density function itself, i.e.,

ϕ(x) ≥ 0∫
ϕ(u)du = 1

To study the effect of the window width hn over pn(x), take

δn(x) =
1

Vn
ϕ

(
x

hn

)
,

such that

pn(x) =
1

n

n∑
i=1

1

Vn
δ(x− xi ).

If hn is very large, the amplitude of δn is small, and x must be far from xi

before δn(x− xi ) changes much from δn(0); in this case, pn(x) is the
superposition of n broad, slowly changing functions and is a very smooth
”out-of-focus” estimate of p(x).
If hn is very small, the peak value of δn(x− xi ) is large and occurs near
x = xi ; in this case, p(x) is the superposition of n sharp pulses centered at
the samples - an erratic, ”noisy” estimate.
For any value of hn, the distribution is normalized, such that as hn
approaches zero, δn(x− xi ) approaches a Dirac delta function centered at
xi , and pn(x) approaches a superposition of delta functions centered at the
samples.
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If Vn is too large, the estimate will suffer from too little resolution; if Vn is
too small, the estimate will suffer from too much statistical variability.

Figure: Two-dimensional symmetric normal Parzen windows ϕ(x/h) for three
different values of h.

Figure: Parzen-window density estimates based on the same set of five samples,
using the window functions in the previous figure.
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Example 1

p(x) = a zero-mean, unit-variance, univariate normal density;

the window function ϕ(u) =
1√
2π

e−u2/2;

hn = h1/
√
n, where h1 – parameter;

pn(x) is an average of normal densities centered at the samples:

px(x) =
1

n

n∑
i=1

1

hn
ϕ

(
x − xi
hn

)
For n = 1, pn(x) is merely a single Gaussian centered about the first
sample.

For n = 10 and h1 = 0.1, the contributions of the individual samples are
clearly discernible; this is not the case for h1 = 1 and h1 = 5.

As n gets larger, the ability of pn(x) to resolve variations in p(x) increases;
also, pn(x) appears to be more sensitive to local sampling irregularities
when n is large.

pn(x) will converge to the smooth normal curve as n goes to infinity.
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Figure: Parzen-window estimates of a univariate normal density using different window
widths and numbers of samples.
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Figure: Parzen-window estimates of a bivariate normal density using different window
widths and numbers of samples.
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Example 2

Take ϕ(x) and hn to be the same as in Example 1.
ϕ(x) is a mixture of two uniform densities:

p(x) =


1, −2.5 < x < −2

1/4, 0 < x < 2
0, otherwise
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Classification example

Estimation is carried out on the densities for each category and a test
point is classified by the label corresponding to the maximum posterior.

In general, the training error – the empirical error on the training points
themselves – can be made arbitrarily low by making the window width
sufficiently small; this does not guarantee a small test error.

In the absence of some information about the underlying distributions,
there is little theoretical justification of one window width over another.

The power of nonparametric methods resides in their generality. With
enough samples, we are essentially assured of convergence to an arbitrarily
complicated target density.

On the other hand, the number of samples needed may be very large
indeed much greater than would be required if we knew the form of the
unknown density. These methods have severe requirements for
computation time and storage. Moreover, the demand for a large number
of samples grows exponentially with the dimensionality of the feature
space.
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Figure: The decision boundaries in a two-dimensional Parzen-window dichotomizer
depend on the window width h. At the left a small h leads to boundaries that are
more complicated than for large h on same data set, shown at the right. Apparently,
for this data a small h would be appropriate for the upper region, while a large h for
the lower region.
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Probabilistic Neural Networks (PNNs)

We wish to form a Parzen estimate based on n patterns, each of which is
d-dimensional, randomly sampled from c classes.

The connections from the d input units to the n pattern units represent
modifiable weights, which will be trained. Each link from a pattern unit to
its associated category unit is of a single constant magnitude.
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PNN training

1 Each pattern x of the training set is normalized such that
∑d

i=1 x
2
i = 1.

2 The first normalized training pattern is placed on the input units; the
modifiable weights linking the input units and the first pattern unit are set
such that w1 = x1.

3 A single connection from the first pattern unit is made to the category unit
corresponding to the known class of that pattern.

4 The process is repeated with each of the remaining training patterns,
setting the weights to the successive pattern units such that wk = xk for
k = 1, 2, . . . , n.
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PNN classification
1 A normalized test pattern x is placed at the input units; each pattern unit

computes the inner product
zk = wt

kx

and emits a nonlinear function of zk .
2 Each output unit sums the contributions from all pattern units connected to

it. The nonlinear function is e(zk−1)/σ2
, where σ is a parameter set by the

user.
3 Each pattern unit contributes to its associated category unit a signal equal

to the probability the test point was generated by a Gaussian centered on
the associated training point; the sum of these local estimates (computed at
the corresponding category unit) gives the discriminant function gi (x) - the
Parzen window estimate of the underlying distribution.

4 The desired category for the test point is maxi gi (x).
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PNNs advantages:
1 speed of learning (the learning rule wk = xk is simple and requires only a

single pass through the training data)
2 new training patterns can be incorporated into a previously trained classifier

quite easily

PNNs disadvantage: space complexity (O((n + 1)d)).

Choosing the window function is the main problem in the
Parzen-window/PNN approach.
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kn-Nearest-Neighbour Estimation

Let the cell volume be a function of the training data, rather than some
arbitrary function of the overall number of samples.

To estimate p(x) from n prototypes, center a cell about x and let it grow
until it captures kn samples, where kn is some specified function of n.

If the density is high near x, the cell will be relatively small; if the density
is low, the cell will grow large, but it will stop soon after it enters regions
of higher density.

Take

pn(x) =
kn/n

Vn

and ask that kn →∞, such that kn/n is a good estimate of the probability
that a point will fall in the cell of volume Vn.

The ratio kn/n must go to zero, since kn should grow sufficiently slowly
that the size of the cell needed to capture kn training samples will shrink
to zero.
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Examples

For kn =
√
n, assuming that pn(x) is a reasonably good approximation to

p(x), then Vn ≈ 1/(
√
np(x)); hence, the initial volume V1 is determined

by the nature of the data rather than by some arbitrary choice.
There are nearly always discontinuities in the slopes of these estimates,
and these lie away from the prototypes themselves:

R.O. Duda, P.E. Hart, D.G. Stork Pattern Classification - Chapter 4 Nonparametric techniques



Figure: Several kn-nearest-neighbor estimates of two unidimensional densities: a
Gaussian and a bimodal distribution.
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Estimation of a posteriori probabilities

Place a cell of volume V around x and capture k samples, ki of which turn
out to be labeled ωi .

The estimation for the joint probability p(x, ωi ) is

pn(x, ωi ) =
ki/n

V
,

hence a reasonable estimate for P(ωi |x) is

Pn(ωi |x) =
pn(x, ωi )∑c
j=1 pn(x|ωj)

=
ki
k

(the estimate of the a posteriori probability that ωi is the state of nature is
merely the fraction of the samples within the cell that are labelled ωi ).

For minimum error rate, the category most frequently represented within
the cell must be selected.

The size of the cell can be chosen using either the Parzen-window
approach (where Vn is some specified function of n), or the
kn-nearest-neighbor approach (where Vn should be expanded until some k
samples are captured).

The cell volume could become arbitrarily small for n→∞ and yet contain
an arbitrarily large number of samples!
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The Nearest-Neighbor Rule

Dn = {x1, . . . , xn} – a set of n labeled prototypes

x′ ∈ Dn – the prototype nearest to a test point x

The nearest-neighbor rule (assign x the label of x′) usually leads to an
error rate greater than the minimum possible, the Bayes rate; however,
with an unlimited number of prototypes, the error rate is never worse than
twice the Bayes rate.

The label θ′ associated with the nearest neighbor is a random variable,
and the probability that θ′ = ωi is merely the a posteriori probability
P(ωi |x′). For a very large number of samples, it is reasonable to assume
that x′ is sufficiently close to x that P(ω|x′) = P(ωi |x) (the
nearest-neighbor rule is effectively matching probabilities with nature).
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Define ωm(x) by
P(ωm|x) = maxi P(ωi |x),

such that Bayes decision rule always selects ωm.

We partition the feature space into cells consisting of all points closer to a
given training point x′ than to any other training points; all points in such
a cell are thus labelled by the category of the training point (the Voronoi
tesselation of the space):

It can be shown that at least half of the classification information in an
infinite data set resides in the nearest neighbor (the nearest-neighbor
error rate is bounded above by twice the Bayes rate).
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The k-Nearest-Neighbor Rule

We classify x by assigning it the label most frequently represented among
the k nearest samples:

Figure: The case k = 5, when test point x would be labeled the category of the
black points (in the two-class case, k should be odd).

The labels on each of the k-nearest-neighbors are random variables, which
independently assume the values ωi with probabilities P(ωi |x).
We want to use a large value of k to obtain a reliable estimate. On the
other hand, we want all of the k nearest neighbors x′ to be very near x to
be sure that P(ωi |x′) is approximately the same as P(ωi |x); we must
choose a compromise k that is a small fraction of the number of samples.
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Computational Complexity of the k-Nearest-Neighbor Rule
For n labeled training samples in d dimensions, seeking to find the closest
to a test point x (k = 1) means inspecting each stored point in turn,
calculating its Euclidean distance to x, retaining the identity only of the
current closest one; the complexity: O(dn2).
Algorithmic techniques for reducing the computational burden in
nearest-neighbor searches:

1 Computing partial distances: calculate the distance using some partial
subset r of the full d dimensions, and if this partial distance is too great we
do not compute further.

2 Prestructuring : create some form of search tree in which prototypes are
selectively linked; during classification, we compute the distance of the test
point to one tree or a few stored ”entry” or ”root” prototypes and then
consider only the prototypes linked to it. Of these, we find the one that is
closest to the test point, and recursively consider only subsequent linked
prototypes.

3 Editing : eliminate ”useless” prototypes during training (prototypes that are
surrounded by training points of the same category label); example

algorithm of complexity O(d3nbd/2c ln n):
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